Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(42): 7578-7590, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36257817

RESUMO

The selective dehydrogenation of hydrocarbons and their functionalized derivatives is a promising pathway in the realization of endothermic fuel systems for powering important technologies such as hypersonic aircraft. The recent surge in interest in single atom catalysts (SACs) over the past decade offers the opportunity to achieve the ultimate levels of selectivity through the subnanoscale design tailoring of novel catalysts. Experimental techniques capable of investigating the fundamental nature of the active sites of novel SACs in well-controlled model studies offer the chance to reveal promising insights. We report here an approach to accomplish this through the soft landing of mass-selected, ultrasmall metal oxide cluster ions, in which a single noble metal atom bound to a metal oxide moiety serves as a model SAC active site. This method allows the preparation of model catalysts in which monodispersed neutral SAC model active sites are decorated across an inert electrically conductive support at submonolayer surface coverage, in this case, Pt1Zr2O7 clusters supported on highly oriented pyrolytic graphite (HOPG). The results contained herein show the characterization of the Pt1Zr2O7/HOPG model catalyst by X-ray photoelectron spectroscopy (XPS), along with an investigation of its reactivity toward the functionalized hydrocarbon molecule, 1-propanamine. Through temperature-programmed desorption/reaction (TPD/R) experiments it was shown that Pt1Zr2O7/HOPG decomposes 1-propanamine exclusively into propionitrile and H2, which desorb at 425 and 550 K, respectively. Conversely, clusters without the single platinum atom, that is, Zr2O7/HOPG, exhibited no reactivity toward 1-propanamine. Hence, the single platinum atom in Pt1Zr2O7/HOPG was found to play a critical role in the observed reactivity.

2.
Inorg Chem ; 57(14): 8181-8188, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29975049

RESUMO

The combustion mechanism of [AlCp*]4 (Cp* = pentamethylcyclopentadienyl), a ligated aluminum(I) cluster, was studied by a combination of experimental and theoretical methods. Two complementary experimental methods, temperature-programmed reaction and T-jump time-of-flight mass spectrometry, were used to investigate the decomposition behaviors of [AlCp*]4 in both anaerobic and oxidative environments, revealing AlCp* and Al2OCp* to be the major decomposition products. The observed product distribution and reaction pathways are consistent with the prediction from molecular dynamics simulations and static density functional theory calculations. These studies demonstrated that experiment and theory can indeed serve as complementary and predictive means to study the combustion behaviors of ligated aluminum clusters and may help in engineering stable compounds as candidates for rocket propellants.

3.
Phys Chem Chem Phys ; 20(7): 4840-4850, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29383341

RESUMO

The adsorption and decomposition of dimethyl methylphosphonate (DMMP), a chemical warfare agent (CWA) simulant, on size-selected molybdenum oxide trimer clusters, i.e. (MoO3)3, was studied both experimentally and theoretically. X-ray photoelectron spectroscopy (XPS), temperature programmed reaction (TPR), and density functional theory (DFT)-based simulations were utilized in this study. The XPS and TPR results showed both, desorption of intact DMMP, and decomposition of DMMP through the elimination of methanol at elevated temperatures on (MoO3)3 clusters. Theoretical investigation of DMMP on (MoO3)3 clusters suggested that, in addition to pure (MoO3)3 clusters, reduced molybdenum oxide clusters and hydroxylated molybdenum oxide clusters also play an important role in decomposing DMMP via a "reverse Mars-van Krevelen mechanism". The present study, which focused on oxide clusters, underlines the importance of surface defects, e.g., the oxygen vacancies and surface hydroxyls, in determining the reaction pathway of DMMP, in agreement with previous studies on thin films. In addition, the structural fluxionality and the Lewis acidity of molybdenum oxide clusters, i.e. (MoO3)3, may make them good candidates for adsorption and decomposition of chemical warfare agents with similar structures to DMMP.

4.
J Phys Chem A ; 119(45): 11084-93, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26488461

RESUMO

Additives to hydrocarbon fuels are commonly explored to change the combustion dynamics, chemical distribution, and/or product integrity. Here we employ a novel aluminum-based molecular additive, Al(I) tetrameric cluster [AlBrNEt3]4 (Et = C2H5), to a hydrocarbon fuel and evaluate the resultant single-droplet combustion properties. This Al4 cluster offers a soluble alternative to nanoscale particulate additives that have recently been explored and may mitigate the observed problems of particle aggregation. Results show the [AlBrNEt3]4 additive to increase the burn rate constant of a toluene-diethyl ether fuel mixture by ∼20% in a room temperature oxygen environment with only 39 mM of active aluminum additive (0.16 wt % limited by additive solubility). In comparison, a roughly similar addition of nano-aluminum particulate shows no discernible difference in burn properties of the hydrocarbon fuel. High speed video shows the [AlBrNEt3]4 to induce microexplosive gas release events during the last ∼30% of the droplet combustion time. We attribute this to HBr gas release based on results of temperature-programmed reaction (TPR) experiments of the [AlBrNEt3]4 dosed with O2 and D2O. A possible mechanism of burn rate enhancement is presented that is consistent with microexplosion observations and TPR results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...